Friday, 29 May 2020

What does statistical homogenization tell us about the underestimated global warming over land?

Climate station data contains inhomogeneities, which are detected and corrected by comparing a candidate station to its neighbouring reference stations. The most important inhomogeneities are the ones that lead to errors in the station network-wide trends and in global trend estimates. 

An earlier post in this series argued that statistical homogenization will tend to under-correct errors in the network-wide trends in the raw data. Simply put: that some of the trend error will remain. The catalyst for this series is the new finding that when the signal to noise ratio is too low, homogenization methods will have large errors in the positions of the jumps/breaks. For much of the earlier data and for networks in poorer countries this probably means that any trend errors will be seriously under-corrected, if they are corrected at all.

The questions for this post are: 1) What do the corrections in global temperature datasets do to the global trend and 2) What can we learn from these adjustments for global warming estimates?

The global warming trend estimate

In the global temperature station datasets statistical homogenization leads to larger warming estimates. So as we tend to underestimate how much correction is needed, this suggests that the Earth warmed up more than current estimates indicate.

Below is the warming estimate in NOAA’s Global Historical Climate Network (Versions 3 and 4) from Menne et al. (2018). You see the warming in the “raw data” (before homogenization; striped lines) and in the homogenized data (drawn line). The new version 4 is drawn in black, the previous version 3 in red. For both versions homogenization makes the estimated warming larger.

After homogenization the warming estimates of the two versions are quite similar. The difference is in the raw data. Version 4 is based on the raw data of the International Surface Temperature Initiative and has much more stations. Version 3 had many stations that report automatically, these are typically professional stations and a considerable part of them are at airports. One reason the raw data may show less warming in Version 3 is that many stations at airports were in cities before. Taking them out of the urban heat island and often also improving the local siting of the station, may have produced a systematic artificial cooling in the raw observations.

Version 4 has more stations and thus a higher signal to noise ratio. One may thus expect it to show more warming. That this is not the case is a first hint that the situation is not that simple, as explained at the end of this post.


Figure from Menne et al. with warming estimates from 1880. See caption below.
The global land warming estimates based on the Global Historical Climate Network dataset of NOAA. The red lines are for version 3, the black lines for the new version 4. The striped lines are before homogenization and the drawn lines after homogenization. Figure from Menne et al. (2018).

The difference due to homogenization in the global warming estimates is shown in the figure below, also from Menne et al. (2018). The study also added an estimate for the data of the Berkeley Earth initiative.

(Background information. Berkeley Earth started as a US Culture War initiative where non-climatologists computed the observed global warming. Before the results were in, climate “sceptics” claimed their methods were the best and they would accept any outcome. The moment the results turned out to be scientifically correct, but not politically correct, the climate “sceptics” dropped them like a hot potato.)

We can read from the figure that in GHCNv3 over the full period homogenization increases warming estimates by about 0.3 °C per century, while this is 0.2°C in GHCNv4 and 0.1°C in the dataset of Berkeley Earth datasets. GHCNv3 has more than 7000 stations (Lawrimore et al., 2011). GHCNv4 is based on the ISTI dataset (Thorne et al., 2011), which has about 32,000 stations, but GHCN only uses those of at least 10 years and thus contains about 26,000 stations (Menne et al. 2018). Berkeley Earth is based on 35,000 stations (Rohde et al., 2013).


Figure from Menne et al. (2018) showing how much adjustments were made.
The difference due to homogenization in the global warming estimates (Menne et al., 2018). The red line is for smaller GHCNv3 dataset, the black line for GHCNv4 and the blue line for Berkeley Earth.

What does this mean for global warming estimates?

So, what can we learn from these adjustments for global warming estimates? At the moment, I am afraid, not yet a whole lot. However, the sign is quite likely right. If we could do a perfect homogenization, I expect that this would make the warming estimates larger. But to estimate how large the correction should have been based on the corrections which were actually made in the above datasets is difficult.

In the beginning, I was thinking: if the signal to noise ratio in some network is too low, we may be able to estimate that in such a case we under-correct, say, 50% and then make the adjustments unbiased by making them, say, twice as large.

However, especially doing this globally is a huge leap of faith.

The first assumption this would make is that the trend bias in data sparse regions and periods is the same as that of data rich regions and periods. However, the regions with high station density are in the [[mid-latitudes]] where atmospheric measurements are relatively easy. The data sparse periods are also the periods in which large changes in the instrumentation were made as we were still learning how to make good meteorological observations. So we cannot reliably extrapolate from data rich regions and periods to data sparse regions and periods. 

Furthermore, there will not be one correction factor to account for under-correction because the signal to noise ratio is different everywhere. Maybe America is only under-corrected by 10% and needs just a little nudge to make the trend correction unbiased. However, homogenization adjustments in data sparse regions may only be able to correct such a small part of the trend bias that correcting for the under-correction becomes adventurous or even will make trend estimates more uncertain. So we would at least need to make such computations for many regions and periods.

Finally, another reason not to take such an estimate too seriously are the spatial and temporal characteristics of the bias. The signal to noise ratio is not the only problem. One would expect that it also matters how the network-wide trend bias is distributed over the network. In case of relocations of city stations to airports, a small number of stations will have a large jump. Such a large jump is relatively easy to detect, especially as its neighbouring stations will mostly be unaffected.

Already a harder case is the time of observation bias in America, where a large part of the stations has experienced a cooling shift from afternoon to morning measurements over many decades. Here, in most cases the neighbouring stations were not affected around the same time, but the smaller shift makes it harder to detect these breaks.

(NOAA has a special correction for this problem, but when it is turned off statistical homogenization still finds the same network-wide trend. So for this kind of bias the network density in America is apparently sufficient.)

Among the hardest case are changes in the instrumentation. For example, the introduction of Automatic Weather Stations in the last decades or the introduction of the Stevenson screen a century ago. These relatively small breaks often happen over a period of only a few decades, if not years, which means that also the neighbouring stations are affected. That makes it hard to detect them in a difference time series.

Studying from the data how the biases are distributed is hard. One could study this by homogenizing the data and studying the breaks, but the ones which are difficult to detect will then be under-represented. This is a tough problem; please leave suggestions in the comments.

Because of how the biases are distributed it is perfectly possible that the trend biases corrected in GHCN and Berkley Earth are due to the easy-to-correct problems, such as the relocations to airports, while the hard ones, such as the transition to Stevenson screens, are hardly corrected. In this case, the correction that could be made, do not provide information on the ones that could not be made. They have different causes and different difficulties.

So if we had a network where the signal to noise ratio is around one, we could not say that the under-correction is, say, 50%. One would have to specify for which kind of distribution of the bias this is valid.

GHCNv3, GHCNv4 and Berkeley Earth

Coming back to the trend estimates of GHCN version 3 and version 4. One may have expected that version 4 is able to better correct trend biases, having more stations, and should thus show a larger trend than version 3. This would go even more so for Berkeley Earth. But the final trend estimates are quite similar. Similarly in the most data rich period after the second world war, the least corrections are made.

The datasets with the largest number of stations showing the strongest trend would have been a reasonable expectation if the trend estimates of the raw data would have been similar. But these raw data trends are the reason for the differences in the size of the corrections, while the trend estimates based on the homogenized are quite similar.

Many additional stations will be in regions and periods where we already had many stations and where the station density was no problem. On the other hand, adding some stations to data sparse regions may not be sufficient to fix the low signal to noise ratio. So the most improvements would be expected for the moderate cases where the signal to noise ratio is around one. Until we have global estimates of the signal to noise ratio for these datasets, we do not know for which percentage of stations this is relevant, but this could be relatively small.

The arguments of the previous section are also applicable here; the relationship between station density and adjustments may not be that easy. Especially that the corrections in the period after the second world war are so small is suspicious; we know quite a lot happened to the measurement networks. Maybe these effects all average out, but that would be quite a coincidence. Another possibility is that these changes in observational methods were made over relatively short periods to entire networks making it hard to correct them.

A reason for the similar outcomes for the homogenized data could be that all datasets successfully correct for trend biases due to problems like the transition to airports, while for every dataset the signal to noise ratio is not enough to correct problems like the transition to Stevenson screens. GHNCv4 and Berkeley Earth using as many stations as they could find could well have more stations which are currently badly sited than GHCNv3, which was more selective. In that case the smaller effective corrections of these two datasets would be due to compensating errors.

Finally, as small disclaimer: The main change from version 3 to 4 was the number of stations, but there were other small changes, so it is not just a comparison of two datasets where only the signal to noise ratio is different. Such a pure comparison still needs to be made. The homogenization methods of GHCN and Berkeley Earth are even more different.

My apologies for all the maybe's and could be's, but this is something that is more complicated than it may look and I would not be surprised if it will turn out to be impossible to estimate how much corrections are needed based on the corrections that are made by homogenization algorithms. The only thing I am confident about is that homogenization improves trend estimates, but I am not confident about how much it improves.

Parallel measurements

Another way to study these biases in the warming estimates is to go into the books and study station histories in 200 plus countries. This is basically how sea surface temperature records are homogenized. To do this for land stations is a much larger project due to the large number of countries and languages.

Still there are such experiments, which give a first estimate for some of the biases when it comes to the global mean temperature (do not expect regional detail). In the next post I will try to estimate the missing warming this way. We do not have much data from such experiments yet, but I expect that this will be the future.

Other posts in this series






References

Chimani, Barbara, Victor Venema, Annermarie Lexer, Konrad Andre, Ingeborg Auer and Johanna Nemec, 2018: Inter-comparison of methods to homogenize daily relative humidity. International Journal Climatology, 38, pp. 3106–3122. https://doi.org/10.1002/joc.5488

Gubler, Stefanie, Stefan Hunziker, Michael Begert, Mischa Croci-Maspoli, Thomas Konzelmann, Stefan Brönnimann, Cornelia Schwierz, Clara Oria and Gabriela Rosas, 2017: The influence of station density on climate data homogenization. International Journal of Climatology, 37, pp. 4670–4683. https://doi.org/10.1002/joc.5114

Lawrimore, Jay H., Matthew J. Menne, Byron E. Gleason, Claude N. Williams, David B. Wuertz, Russel S. Vose and Jared Rennie, 2011: An overview of the Global Historical Climatology Network monthly mean temperature data set, version 3. Journal of Geophysical Research, 116, D19121. https://doi.org/10.1029/2011JD016187

Lindau, Ralf and Victor Venema, 2018: On the reduction of trend errors by the ANOVA joint correction scheme used in homogenization of climate station records. International Journal of Climatology, 38, pp. 5255– 5271. Manuscript: https://eartharxiv.org/r57vf/ Article: https://doi.org/10.1002/joc.5728

Rohde, Robert, Richard A. Muller, Robert Jacobsen, Elizabeth Muller, Saul Perlmutter, Arthur Rosenfeld, Jonathan Wurtele, Donald Groom and Charlotte Wickham, 2013: A New Estimate of the Average Earth Surface Land Temperature Spanning 1753 to 2011. Geoinformatics & Geostatistics: An Overview, 1, no.1. https://doi.org/10.4172/2327-4581.1000101

Sutton, Rowan, Buwen Dong and Jonathan Gregory, 2007: Land/sea warming ratio in response to climate change: IPCC AR4 model results and comparison with observations. Geophysical Research Letters, 34, L02701. https://doi.org/10.1029/2006GL028164

Thorne, Peter W., Kate M. Willett, Rob J. Allan, Stephan Bojinski, John R. Christy, Nigel Fox, Simon Gilbert, Ian Jolliffe, John J. Kennedy, Elizabeth Kent, Albert Klein Tank, Jay Lawrimore, David E. Parker, Nick Rayner, Adrian Simmons, Lianchun Song, Peter A. Stott and Blair Trewin, 2011: Guiding the creation of a comprehensive surface temperature resource for twenty-first century climate science. Bulletin American Meteorological Society, 92, ES40–ES47. https://doi.org/10.1175/2011BAMS3124.1

Wallace, Craig and Manoj Joshi, 2018: Comparison of land–ocean warming ratios in updated observed records and CMIP5 climate models. Environmental Research Letters, 13, no. 114011. https://doi.org/10.1088/1748-9326/aae46f 

Williams, Claude, Matthew Menne and Peter Thorne, 2012: Benchmarking the performance of pairwise homogenization of surface temperatures in the United States. Journal Geophysical Research, 117, D05116. https://doi.org/10.1029/2011JD016761


Friday, 1 May 2020

Statistical homogenization under-corrects any station network-wide trend biases

Photo of a station of the US Climate Reference Network with a prominent wind shield for the rain gauges.
A station of the US Climate Reference Network.


In the last blog post I made the argument that the statistical detection of breaks in climate station data has problems when the noise is larger than the break signal. The post before argued that the best homogenization correction method we have can remove network-wide trend biases perfectly if all breaks are known. In the light of the last post, we naturally would like to know how well this correction method can remove such biases in the more realistic case when the breaks are imperfectly estimated. That should still be studied much better, but it is interesting to discuss a number of other studies on the removal of network-wide trend biases from the perspective of this new understanding.

So this post will argue that it theoretically makes sense that (unavoidable) inaccuracies of break detection lead to network-wide trend biases only being partially corrected by statistical homogenization.

1) We have seen this in our study of the correction method in response to small errors in the break positions (Lindau and Venema, 2018).

2) The benchmarking study of NOAA’s homogenization algorithm shows that if the breaks are big and easy they are largely removed, while in the scenario where breaks are plentiful and small half of the trend bias remains (Williams et al., 2012).

3) Another benchmarking study show that with the network density of Switzerland homogenization can find and remove clear trend biases, while if you thin this network to be similar to Peru the bias cannot be removed (Gubler et al., 2017).

4) Finally, a benchmarking study of relative humidity station observations in Austria could not remove much of the trend bias, which is likely because relative humidity is not correlated well from station to station (Chimani et al., 2018).

Statistical homogenization on a global scale makes warming estimates larger (Lawrimore et al., 2011; Menne et al., 2018). Thus if it can only remove part of any trend bias, this would mean that quite likely the actual warming was larger.


Figure 1: The inserted versus remaining network-mean trend error. Upper panel for perfect breaks. Lower panel for a small perturbation of the break position. The time series are 100 annual values and have 5 break. Figure 10 in Lindau and Venema (2018).

Joint correction method

First, what did our study on the correction method (Lindau and Venema, 2018) say about the importance of errors in the break position? As the paper was mostly about perfect breaks, we assumed that all breaks were known, but that they had a small error in their position. In the example to the right, we perturbed the break position by a normally distributed random number with standard deviation one (lower panel), while for comparison the breaks are perfect (upper panel).

In both cases we inserted a large network-wide trend bias of 0.873 °C over the length of the century long time series. The inserted errors for 1000 simulations is on the x-axis, the average inserted trend bias is denoted by x̅. The remaining error after homogenization is on the y-axis. Its average is denoted by y̅ and basically zero in case the breaks are perfect (top panel). In case of the small perturbation (lower panel) the average remaining error is 0.093 °C, this is 11 % of the inserted trend bias. That is the under-correction for is a quite small perturbation: 38 % of the positions is not changed at all.

If the standard deviation of the position perturbation is increased to 2, the remaining trend bias is 21 % of the inserted bias.

In the upper panel, there is basically no correlation between the inserted and the remaining error. That is, the remaining error does not depend on the break signal, but only on the noise. In the lower panel with the position errors, there is a correlation between the inserted and remaining trend error. So in this more realistic case, it does matter how large the trend bias due to the inhomogeneities is.

This is naturally an idealized case, position errors will be more complicated in reality and there would be spurious and missing breaks. But this idealized case fitted best to the aim of the paper of studying the correction algorithm in isolation.

It helps understand where the problem lies. The correction algorithm is basically a regression that aims to explain the inserted break signal (and the regional climate signal). Errors in the predictors will lead to an explained variance that is less than 100 %. One should thus expect that the estimated break signal is smaller than the actual break signal. It is thus expected that the trend change due to the estimated break signal produces is smaller than the actual trend change due to the inhomogeneities.

NOAA’s benchmark

That statistical homogenization under-corrects when the going gets tough is also found by the benchmarking study of NOAA’s Pairwise Homogenization Algorithm in Williams et al. (2012). They simulated temperature networks like the American USHCN network and added inhomogeneities according to a range of scenarios. (Also with various climate change signals.) Some scenarios were relatively easy, had few and large breaks, while others were hard and contained many small breaks. The easy cases were corrected nearly perfectly with respect to the network-wide trend, while in the hard cases only half of the inserted network-wide trend error was removed.

The results of this benchmarking for the three scenarios with a network-wide trend bias are shown below. The three panels are for the three scenarios. Each panel has results (the crosses, ignore the box plots) for three periods over which the trend error was computed. The main message is that the homogenized data (orange crosses) lies between the inhomogeneous data (red crosses) and the homogeneous data (green crosses). Put differently, green is how much the climate actually changed, red is how much the estimate is wrong due to inhomogeneities, orange shows that homogenization moves the estimate towards the truth, but never fully gets there.

If we use the number of breaks and their average size as a proxy for the difficulty of the scenario, the one on the left has 6.4 breaks with an average size of 0.8 °C, the one in the middle 8.4 breaks (size 0.4 °C) and the one on the right 10 breaks (size 0.4 °C). So this suggests there is a clear dose effect relationship; although there surely is more than just the number of breaks.


Figures from Williams et al. (2012) showing the results for three scenarios. This is a figure I created from parts of Figure 7 (left), Figure 5 (middle) and Figure 10 (right; their numbers).

When this study appeared in 2012, I found the scenario with the many small breaks much too pessimistic. However, our recent study estimating the properties of the inhomogeneities of the American network found a surprisingly large number of breaks: more than 17 per century; they were bigger: 0.5 °C. So purely based on the number of breaks the hardest scenario is even optimistic, but also size matters.

Not that I would already like to claim that even in a dense network like the American there is a large remaining trend bias and the actual warming was much larger. There is more to the difficulty of inhomogeneities than their number and size. It sure is worth studying.

Alpine benchmarks

The other two examples in the literature I know of are examples of under-correction in the sense of basically no correction because the problem is simply too hard. Gubler et al. (2017) shows that the raw data of the Swiss temperature network has a clear trend bias, which can be corrected with homogenization of its dense network (together with metadata), but when they thin the network to a network density similar to that of Peru, they are unable to correct this trend bias. For more details see my review of this article in the Grassroots Review Journal on Homogenization.

Finally, Chimani et al. (2018) study the homogenization of daily relative humidity observations in Austria. I made a beautiful daily benchmark dataset, it was a lot of fun: on a daily scale you have autocorrelations and a distribution with an upper and lower limit, which need to be respected by the homogeneous data and the inhomogeneous data. But already the normal homogenization of monthly averages was much too hard.

Austria has quite a dense network, but relative humidity is much influenced by very local circumstances and does not correlate well from station to station. My co-authors of the Austrian weather service wanted to write about the improvements: "an improvement of the data by homogenization was non‐ideal for all methods used". For me the interesting finding was: nearly no improvement was possible. That was unexpected. Had we expected that we could have generated a much simpler monthly or annual benchmark to show no real improvement was possible for humidity data and saved us a lot of (fun) work.

What does this mean for global warming estimates?

When statistical homogenization only partially removes large-scale trend biases what does this mean for global warming estimates? In the global temperature datasets statistical homogenization leads to larger warming estimates. So if we tend to underestimate how much correction is needed, this would mean that the Earth most likely warmed up more than current estimates indicate. How much exactly is hard to tell at the moment and thus needs a nuanced discussion. Let me give you my considerations in the next post.


Other posts in this series

Part 5: Statistical homogenization under-corrects any station network-wide trend biases

Part 4: Break detection is deceptive when the noise is larger than the break signal

Part 3: Correcting inhomogeneities when all breaks are perfectly known

Part 2: Trend errors in raw temperature station data due to inhomogeneities

Part 1: Estimating the statistical properties of inhomogeneities without homogenization

References

Chimani Barbara, Victor Venema, Annermarie Lexer, Konrad Andre, Ingeborg Auer and Johanna Nemec, 2018: Inter-comparison of methods to homogenize daily relative humidity. International Journal Climatology, 38, pp. 3106–3122. https://doi.org/10.1002/joc.5488.

Gubler, Stefanie, Stefan Hunziker, Michael Begert, Mischa Croci-Maspoli, Thomas Konzelmann, Stefan Brönnimann, Cornelia Schwierz, Clara Oria and Gabriela Rosas, 2017: The influence of station density on climate data homogenization. International Journal of Climatology, 37, pp. 4670–4683. https://doi.org/10.1002/joc.5114

Lawrimore, Jay H., Matthew J. Menne, Byron E. Gleason, Claude N. Williams, David B. Wuertz, Russell S. Vose and Jared Rennie, 2011: An overview of the Global Historical Climatology Network monthly mean temperature data set, version 3. Journal Geophysical Research, 116, D19121. https://doi.org/10.1029/2011JD016187

Lindau, Ralf and Victor Venema, 2018: On the reduction of trend errors by the ANOVA joint correction scheme used in homogenization of climate station records. International Journal of Climatology, 38, pp. 5255– 5271. Manuscript: https://eartharxiv.org/r57vf/, paywalled article: https://doi.org/10.1002/joc.5728

Menne, Matthew J., Claude N. Williams, Byron E. Gleason, Jared J. Rennie and Jay H. Lawrimore, 2018: The Global Historical Climatology Network Monthly Temperature Dataset, Version 4. Journal of Climate, 31, 9835–9854.
https://doi.org/10.1175/JCLI-D-18-0094.1

Williams, Claude, Matthew Menne and Peter Thorne, 2012: Benchmarking the performance of pairwise homogenization of surface temperatures in the United States. Journal Geophysical Research, 117, D05116. https://doi.org/10.1029/2011JD016761