Monday, 21 May 2012
What is a change in extreme weather?
The reason for changes in extremes can be divided up into two categories: changes in the mean (see panel a of the figure below) and other changes in the distribution (simplified as a change in the variance in panel b). Mixtures are of course also possible (panel c).
If you are interested in the impacts of climate change, you do not care why the the extremes are changing. If the dikes need to be made stronger or the sewage system needs larger sewers and larger reservoirs, all you need to know is how likely it is that a certain threshold is reached. Much research into changes in extreme weather is climate change impact research and thus does not care much about this distinction.
If you are interested in understanding the climate system, it does matter why the extremes are changing. Changes in the mean state of the climate are relatively well studied. Interesting questions are, for instance, whether a change in the mean changes the distribution via feedback processes or whether the reduced temperature contrasts between the poles and the equator or between day and night cause changes in the distribution.
If you are interested in understanding the climate system also the spatial and temporal averaging scales matter. If rain fronts move slower, they may locally produce more extreme daily precipitation sums, while on a global scale or instantaneously there is no change in the distribution of precipitation.
I hope scientists will distinguish between these two different ways in which extremes may change in future publications and, for example, not only compute the increase in the number of tropical days, but also how many of these days are due to the change in the mean and how many are due to changes in the distribution. I think this would contribute to a better understanding of the climate system.
Figure is taken from Real Climate, which took it from IPCC (2001).
Saturday, 19 May 2012
Paleo and fruitarian lifestyles have a lot in common
A very strict fruitarian only eats fruits in the common meaning, sweet and juicy fruits from trees or bushes. Others also include vegetable fruits such as avocados, tomatoes and cucumbers, still others also include nuts, many regularly eat salad. To get sufficient calories from fruits, a fruitarian has to eat several kilograms of fruit. Some people calling themselves fruitarians actually get most calories from nuts and avocados. In this post fruitarians are people getting most calories from simple carbohydrates, that is from sweet fruits.
The paleolithic lifestyle is inspired by the way people lived before agriculture. As the information from the Paleolithic Age is scarce, in praxis this often means, that existing hunter gatherers and their diets and lifestyles are studied. Such bands often trade with nearby agriculturalists and thus no longer live a true stone-age life. Still as long as they are free from the deceases of civilisation, they provide good role models in my view. Similarly, many paleos also look at other existing cultures that are in good health. In this respect the paleo community is close to the Weston A Price Foundation, who seek guidance with how people lived a few generations ago. The paleo diet is best defined by what it not eaten: processed foods, grains, sugar and refined seed oils.
Friday, 17 February 2012
HUME: Homogenisation, Uncertainty Measures and Extreme weather
To keep this post short, a background in homogenisation is assumed and not every argument is fully rigorous.
Aim
This document wants to start a discussion on the research priorities in homogenisation of historical climate data from surface networks. It will argue that with the increased scientific work on changes in extreme weather, the homogenisation community should work more on daily data and especially on quantifying the uncertainties remaining in homogenized data. Comments on these ideas are welcome as well as further thoughts. Hopefully we can reach a consensus on research priorities for the coming years. A common voice will strengthen our voice with research funding agencies.
State-of-the-art
From homogenisation of monthly and yearly data, we have learned that the size of breaks is typically on the order of the climatic changes observed in the 20th century and that period between two detected breaks is around 15 to 20 years. Thus these inhomogeneities are a significant source of error and need to be removed. The benchmark of the Cost Action HOME has shown that these breaks can be removed reliably, that homogenisation improves the usefulness of the temperature and precipitation data to study decadal variability and secular trends. Not all problems are already optimally solved, for instance the solutions for the inhomogeneous reference problem are still quite ad hoc. The HOME benchmark found mixed results for precipitation and the handling of missing data can probably be improved. Furthermore, homogenisation of other climate elements and from different, for example dry, regions should be studied. However, in general, annual and monthly homogenisation can be seen as a mature field. The homogenisation of daily data is still in its infancy. Daily datasets are essential for studying extremes of weather and climate. Here the focus is not on the mean values, but on what happens in the tails of the distributions. Looking at the physical causes of inhomogeneities, one would expect that many of them especially affect the tails of the distributions. Likewise the IPCC AR4 report warns that changes in extremes are often more sensitive to inhomogeneous climate monitoring practices than changes in the mean.
Monday, 16 January 2012
Homogenisation of monthly and annual data from surface stations
Results from the homogenisation of instrumental western climate records indicate that detected inhomogeneities in mean temperature series occur at a frequency of roughly 15 to 20 years. It should be kept in mind that most measurements have not been specifically made for climatic purposes, but rather to meet the needs of weather forecasting, agriculture and hydrology (Williams et al., 2012). Moreover the typical size of the breaks is often of the same order as the climatic change signal during the 20th century (Auer et al., 2007; Menne et al., 2009; Brunetti et al., 2006; Caussinus and Mestre; 2004, Della-Marta et al., 2004). Inhomogeneities are thus a significant source of uncertainty for the estimation of secular trends and decadal-scale variability.
If all inhomogeneities would be purely random perturbations of the climate records, collectively their effect on the mean global climate signal would be negligible. However, certain changes are typical for certain periods and occurred in many stations, these are the most important causes discussed below as they can collectively lead to artificial biases in climate trends across large regions (Menne et al., 2010; Brunetti et al., 2006; Begert et al., 2005).
In this post I will introduce a number of typical causes for inhomogeneities and methods to remove them from the data.
Tuesday, 10 January 2012
New article: Benchmarking homogenisation algorithms for monthly data
Inhomogeneities
To study climatic variability the original observations are indispensable, but not directly usable. Next to real climate signals they may also contain non-climatic changes. Corrections to the data are needed to remove these non-climatic influences, this is called homogenisation. The best known non-climatic change is the urban heat island effect. The temperature in cities can be warmer than on the surrounding country side, especially at night. Thus as cities grow, one may expect that temperatures measured in cities become higher. On the other hand, many stations have been relocated from cities to nearby, typically cooler, airports. Other non-climatic changes can be caused by changes in measurement methods. Meteorological instruments are typically installed in a screen to protect them from direct sun and wetting. In the 19th century it was common to use a metal screen on a North facing wall. However, the building may warm the screen leading to higher temperature measurements. When this problem was realised the so-called Stevenson screen was introduced, typically installed in gardens, away from buildings. This is still the most typical weather screen with its typical double-louvre door and walls. Nowadays automatic weather stations, which reduce labor costs, are becoming more common; they protect the thermometer by a number of white plastic cones. This necessitated changes from manually recorded liquid and glass thermometers to automated electrical resistance thermometers, which reduces the recorded temperature values.A further example for a change in the measurement method is that the precipitation amounts observed in the early instrumental period (about before 1900) are biased and are 10% lower than nowadays because the measurements were often made on a roof. At the time, instruments were installed on rooftops to ensure that the instrument is never shielded from the rain, but it was found later that due to the turbulent flow of the wind on roofs, some rain droplets and especially snow flakes did not fall into the opening. Consequently measurements are nowadays performed closer to the ground.
Sunday, 8 January 2012
What distinguishes a benchmark?
Science has many terms for studying the validity or performance of scientific methods: testing, validation, intercomparison, verification, evaluation, and benchmarking. Every term has a different, sometimes subtly different, meaning. Initially I had wanted to compare all these terms with each other, but that would have become a very long post, especially as the meaning for every term is different in business, engineering, computation and science. Therefore, this post will only propose a definition for benchmarking in science and what distinguishes it from other approaches, casually called other validation studies from now on.
In my view benchmarking has three distinguishing features.
1. The methods are tested blind.
2. The problem is realistic.
3. Benchmarking is a community effort.
The term benchmark has become fashionable lately. It is also used, however, for validation studies that do not display these three features. This is not wrong, as there is no generally accepted definition of benchmarking. In fact in an important article on benchmarking by Sim et al. (2003) defines "a benchmark as a test or set of tests used to compare the performance of alternative tools or techniques." which would include any validation study. Then they limit the topic of their article, however, to interesting benchmarks, which are "created and used by a technical research community." However, if benchmarking is used for any type of validation study, there would not be any added value to the word. Thus I hope this post can be a starting point for a generally accepted and a more restrictive definition.
Friday, 16 December 2011
Natural cures for Asthma?
I would like to share these changes with you, hoping they may also benefit you and also to hear back what benefited others and what not. My personal experiment is a little small (n=1), thus it may well be that some improvement were just by accident and not because of lifestyle change. I have to say that I only had very light asthma. I never had an asthmatic attack, but regularly did wheeze lightly when exhaling at night, my voice was not so strong anymore and my lungs produced too much mucus (leading to some coughing and a coated tongue). Another sign was that the reliever medication (Bronchodilators) made jogging a lot easier.
Asthma is on the rise the last 50 years in the West. Already this points to lifestyle factors being important. Not much seems to be known about which factors these are. It has been noted that children growing up at farms as less affected by asthma as urban children. Based on this, it has been theorized that childhood contact with microbes is beneficial, but I guess there are quite a few other differences between the life on the country side and in cities.
The main changes I made are that I started with intermittent fasting, and nowadays sleep on a firm surface, and do much more walking/hiking. Also important may have been that I do not any grains any more, do less jogging and more sprinting and that I regularly tanning for more vitamin D.
Monday, 5 December 2011
Plan B for our planet
Under the Kyoto protocol a cap on the greenhouse gas emissions for the participating industrialized countries is set. Within this group emission rights can be traded, so that emissions are cut in the most efficient way. With a similar aim, emission can also be reduced by financing emission reductions in emerging economies and developing countries.
The problem of the Kyoto protocol is that the cap on the greenhouse emissions only makes sense if everyone is participating, or at least will participate as soon as they are rich enough. It is possible to do so, the Montreal protocol to curb emissions of chlorofluorocarbons (CFC) to protect the ozone layer works well. In case of the Montreal protocol only the producers of fridges, air conditionings and spray cans were affected. Greenhouse gasses are emitted by the energy, agricultural and building sectors. These are very powerful agents with an interest in the status quo. With propaganda and by encouraging conflicts, they can makes sure that there are always some large greenhouse gas producers not participating.
Maybe a global cap is not needed. Maybe we can see the problem as a dynamical one. How can we develop cost efficient technologies to reduce green house gas emissions. These technologies will be developed if there is a clear price signal; emitting CO2, wasting energy should be costly. Furthermore, economies of scale will be important to reduce the price and the increase competition.
For this, all we need are higher prices for greenhouse gas emissions (for non-renewable energy, etc.) in a large part of the world, but not necessarily all of the world. This part of the world should be allowed to protect itself against imports produced with cheap energy. That is all that the world would need to agree upon.
I expect that Europe would be the region that would start working this way. Due to the import levies, the playing field would be levelled and Europe's industry would be able to compete in the here and now with industries from the outside. In the long run, the Europe's industry would be come more efficient and would be world leader in green technologies. Technologies that will be needed everywhere once the prices of energy, concrete and fertilizer will start to rise due to shortages.
This is a quite attractive position. No disadvantage now, due to the levy, and likely advantages later, due to a technological leading role. It might well be that many countries would like to cooperate, get into this green region to be able to export without levies and to be part of the future.
An agreement that climate import levies are allowed may be easier to achieve as a global cap on greenhouse emissions.
Further reading
More posts on economics.