Friday, 17 February 2012

HUME: Homogenisation, Uncertainty Measures and Extreme weather

Proposal for future research in homogenisation

To keep this post short, a background in homogenisation is assumed and not every argument is fully rigorous.


This document wants to start a discussion on the research priorities in homogenisation of historical climate data from surface networks. It will argue that with the increased scientific work on changes in extreme weather, the homogenisation community should work more on daily data and especially on quantifying the uncertainties remaining in homogenized data. Comments on these ideas are welcome as well as further thoughts. Hopefully we can reach a consensus on research priorities for the coming years. A common voice will strengthen our voice with research funding agencies.


From homogenisation of monthly and yearly data, we have learned that the size of breaks is typically on the order of the climatic changes observed in the 20th century and that period between two detected breaks is around 15 to 20 years. Thus these inhomogeneities are a significant source of error and need to be removed. The benchmark of the Cost Action HOME has shown that these breaks can be removed reliably, that homogenisation improves the usefulness of the temperature and precipitation data to study decadal variability and secular trends. Not all problems are already optimally solved, for instance the solutions for the inhomogeneous reference problem are still quite ad hoc. The HOME benchmark found mixed results for precipitation and the handling of missing data can probably be improved. Furthermore, homogenisation of other climate elements and from different, for example dry, regions should be studied. However, in general, annual and monthly homogenisation can be seen as a mature field. The homogenisation of daily data is still in its infancy. Daily datasets are essential for studying extremes of weather and climate. Here the focus is not on the mean values, but on what happens in the tails of the distributions. Looking at the physical causes of inhomogeneities, one would expect that many of them especially affect the tails of the distributions. Likewise the IPCC AR4 report warns that changes in extremes are often more sensitive to inhomogeneous climate monitoring practices than changes in the mean.