CLIMATE-ES 2015
The International Symposium CLIMATE-ES 2015 (Progress on climate change detection and projections over Spain since the findings of the IPCC AR5 Report.) will be held in Tortosa, Tarragona, Spain, on 11-13 March 2015 and is organised by Manola Brunet et al.Deadline for abstract submission and registration is in four days: 15 December 2014.
There is a session on Climatic observations and instrumental reconstructions: the development of high-quality climate time-series, gridded products and data assimilation techniques. Chaired by José Antonio Guijarro.
EGU2015
Three sessions at the general assembly of the European Geophysical Union (EGU) are interesting for us.Climate Data Homogenization and Climate Trend and Variability Assessment by Xiaolan Wang et al.
... This session calls for contributions that are related to bias correction and homogenization of climate data, including bias correction and validation of various climate data from satellite observations and from GCM and RCM simulations, as well as quality control/assurance of observations of various variables in the Earth system. It also calls for contributions that use high quality, homogeneous climate data to assess climate trends and variability and to analyze climate extremes, including the use of bias-corrected GCM or RCM simulations in statistical downscaling. This session will include studies that inter-compare different techniques and/or propose new techniques/algorithms for bias-correction and homogenization of climate data, for assessing climate trends and variability and analysis of climate extremes (including all aspects of time series analysis), as well as studies that explore the applicability of techniques/algorithms to data of different temporal resolutions (annual, monthly, daily¦) and of different climate elements (temperature, precipitation, pressure, wind, etc) from different observing network characteristics/densities, including various satellite observing systems.
Bridging the gap between observations, reconstructions and simulations for the early instrumental period by Oliver Bothe et. al.
The early instrumental period, covering the late 18th century and the 19th century, was characterized by prominent external climate forcing perturbations, including but not limited to, the Dalton minimum of solar activity and strong volcanic eruptions (e.g., 1783/84 Laki, 1809 eruption at unknown location, 1815 Tambora, 1835 Cosigüina, 1883 Krakatoa). Climate conditions during this period are illustrated by many environmental archives of climate variability as well as by documentary sources and sparse instrumental observations available from various regions. The peculiar characteristics of this period also stimulated research based on numerical climate models. Beyond their direct impact, the external perturbations likely left longer term imprints on the climate system which might be unrepresented in the initial conditions of the historical simulations (1850 - today), thus affecting their reliability. ...
We invite submissions addressing climate variability of the early instrumental period, especially on works combining or contrasting different sources of information to highlight or overcome differences in our estimates about the climate of this period. Contributions aiming at exploring the role of the external forcing in climate variations during the period of interest are specially acknowledged. This includes new estimates about climate variability and forcing in this period. Furthermore, we welcome more general submissions about the long term imprints of episodes with strong natural forcing comparable to that in the early instrumental period.
Taking the temperature of the Earth: Temperature Variability and Change across all Domains of Earth's Surface by Stephan Matthiesen et al.
The overarching motivation for this session is the need for better understanding of in-situ measurements and satellite observations to quantify surface temperature (ST). The term "surface temperature" encompasses several distinct temperatures that differently characterize even a single place and time on Earth’s surface, as well as encompassing different domains of Earth’s surface (surface air, sea, land, lakes and ice). Different surface temperatures play inter-connected yet distinct roles in the Earth’s surface system, and are observed with different complementary techniques.
There is a clear need and appetite to improve the interaction of scientists across the in-situ/satellite 'divide' and across all domains of Earth's surface. This will accelerate progress in improving the quality of individual observations and the mutual exploitation of different observing systems over a range of applications. ...
The deadline for receipt of abstracts is 7 January 2015, and abstracts can be submitted through the session website.
No comments:
Post a Comment
Comments are welcome, but comments without arguments may be deleted. Please try to remain on topic. (See also moderation page.)
I read every comment before publishing it. Spam comments are useless.
This comment box can be stretched for more space.