Article in the GCOS Newsletter of January 2018
While not perfect, the in-situ component of the global climate observing system has been broadly successful in contributing to the detection, attribution, and monitoring of climate change. Measurements of surface meteorological parameters have been made for more than a century in many parts of the world and, together with satellites and other in-situ systems, have provided the evidence for the Intergovernmental Panel on Climate Change to conclude in its last two assessment reports that the evidence for a warming world is unequivocal (IPCC, 2013).
However, the demands on the climate observing systems are ever increasing and a more rigorous assessment of future climate change and variability is needed. This can most plausibly be delivered by a coordinated metrological reference-measurement approach to such monitoring at a sufficient subset of global sites. The principles for such a reference network are traceability, comparability, representativeness, long-term operational viability, full data and metadata retention and open data provision. Reference networks currently exist that have proven value, like the US Climate Reference Network (USCRN), the Global Climate Observing System (GCOS) Reference Upper Air Network (GRUAN), and Cryonet stations from WMO’s Global Cryosphere Watch.
At the request of GCOS Atmospheric Observation Panel for Climate (AOPC) and the WMO Commission for Climatology, a paper outlining the steps toward establishing a GCOS Surface Reference Network (GSRN) was developed and has now been accepted for publication in the International Journal of Climatology. In 2017, the AOPC agreed to the creation of a 2 year task team whose main objective is to assess the feasibility of a global surface reference network by identifying the major stakeholders, the benefits, the practicality of doing this, and the costs.
The task team, chaired by Howard Diamond (US National Oceanic and Atmospheric Administration/Oceanic and Atmospheric Research NOAA/OAR, Air Resources Laboratory) includes experts from the metrology community, WMO’s CIMO, Numerical Weather Prediction, the climate community, other GCOS networks, and met for the first time from 1 to 3 November 2017 at Maynooth University, Ireland. The meeting agreed that the primary benefits of a GCOS Surface Reference Network would be:
- A key step in improving the long-term accuracy, stability and comparability of the observations and result in an improved confidence in detecting the global increase in temperature, as well as the link to historical records.
- Rigorously characterized time series from these sites will lead to the development of a better understanding of important climate related processes, including extreme events, and key to assessing mitigation effectiveness.
- Observations from a GSRN can be used to improve measurements made at other, non-reference site, and co-located reference quality measurements will provide a valuable data set for the calibration and validation of satellite data.
- New techniques and equipment can be tested at the reference sites which will also provide good locations to base future field campaigns. In addition to WMO Members contributing measurement sites, a key catalyst for the success of the GSRN would be the establishment of a global lead center structure to help ensure the adequate coordination of all GSRN activities.
Related post
A stable global climate reference network. Some first thoughts on how to design and organise such a global reference network.* Top photo: US Climate Reference Network.
* Last photo of automatic weather station at Cape Morris Jesup, the northernmost point of mainland Greenland, taken by the technicians of the Danish weather service and kindly offered by Ruth Mottram.
ReplyDeleteGreat!